

Journal of Fluorine Chemistry 107 (2001) 133-136

www.elsevier.com/locate/jfluchem

Selective production of difluoromethyl methyl ether from chlorodifluoromethane using alkali metal carbonates

Hyunjoo Lee^a, Hoon Sik Kim^a, Sang Deuk Lee^a, Won Koo Lee^b, Honggon Kim^{a,*}

a CFC Alternatives Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongrayng, Seoul 136-791, South Korea ^bDepartment of Chemistry, Sogang University, Seoul 121-742, South Korea

Received 28 July 2000; accepted 29 September 2000

Abstract

 $CHF₂OCH₃$ (HFE-152a), an important starting material for synthesizing various $C₂$ hydrofluoroethers and a prospective alternative to $CH₃CF₂Cl$ (HCFC-142b), has been found to be effectively produced from the reaction of CHF₂Cl (HCFC-22) with alkali metal carbonates in methanol. Some alkali metal carbonates induce selective production of CHF_2OCH_3 with a small amount of $CH(OCH_3)_3$, a major side product. Activities of alkali metal carbonates for producing CHF₂OCH₃ are in the order of $K_2CO_3 > Na_2CO_3 > Li_2CO_3$, suggesting that the solubility and ionization tendency of alkali metal carbonate in methanol play important roles in the reaction. \odot 2001 Elsevier Science B.V. All rights reserved.

Keywords: Hydrofluoroether; Difluoromethyl methyl ether; Chlorodifluoromethane; Alkali metal carbonate

1. Introduction

Hydrofluoroethers (HFEs) are prospective candidates for next generation alternatives of CFCs (chlorofluorocarbons) because HFEs do not produce ozone depletion and these have very low impact on global warming $[1-3]$. Several theoretical and experimental reports proposed that some HFEs such as $CHF₂OCHF₂$, $CF₃OCH₃$, $CF₃CF₂OCH₃$, and $CF_3CF_2CF_2OCH_3$ have favorable physical and chemical properties as do CFCs, HCFCs (hydrochlorofluorocarbons) and HFCs (hydrofluorocarbons) $[4–6]$.

Difluoromethyl methyl ether $(CHF₂OCH₃, HFE-152a)$ is considered a useful starting material for synthesizing various higher-fluorinated dimethyl ethers [7] and a possible alternative refrigerant to CH_3CF_2Cl (HCFC-142b) [8]. It has been reported that $CHF₂OCH₃$ can be synthesized by the reaction of $CHF₂Cl$ and $CH₃ONa$ in which, however, a large amount of trimethylorthoformate, $CH(OCH₃)₃$, is produced as a side product which is, however, economically valueless [8-10]. Formation of $CH(OCH₃)₃$ requires competitive consumption of the reactants, $CHF₂Cl$ and $CH₃ONa$. In other words, the formation of $CH(OCH₃)₃$ inevitably reduces the yield of $CHF₂OCH₃$.

In this paper, we report a method to suppress effectively the formation of the side product, $CH(OCH₃)₃$ by employing alkali metal carbonates instead of using $CH₃ONa$ as a base.

2. Experimental

 CHF_2Cl (purity $> 98\%$) was supplied from Ulsan Chemical Co. Methyl alcohol, sodium methoxide, alkali metal carbonates and other reagents used were purchased from Aldrich Chemical Co. All chemicals were used without further purification.

Reactions were conducted in a 100 ml stainless steel highpressure reactor with a magnetic drive stirrer and an electrical heating jacket. Base (50 mmol), methanol (25 ml) and ethylene glycol dimethyl ether (1 g, internal standard) were charged into the reactor. After the mixture was cooled to 5° C with a vigorous stirring, CHF₂Cl (200 mmol) was fed to the reactor through a sampling valve. The reactor was then heated to a reaction temperature and the reactants were stirred for 2 h. After cooling the reaction mixture to 78° C, a sample of the liquid phase was analyzed using GC (HP 6890, HP-1, 50 m \times 0.2 mm \times 10 um). The formation of CHF₂OCH₃ was confirmed by GC-Mass (HP 6890-5973 MSD) and 19F NMR (564.54 MHz, Varian INOVA-600) [11].

 $*$ Corresponding author. Tel.: $+82-2-958-5858$; fax: $+82-2-958-5859$. E-mail address: hkim@kist.re.kr (H. Kim).

 $0022-1139/01/\$$ – see front matter \textcircled{c} 2001 Elsevier Science B.V. All rights reserved. PII: S 0022-1139(00)00392-4

Conversion of the base was determined by acidimetric titration of unreacted base left in the solution using 0.1N aqueous HCl with an indicator. Yields of $CHF₂OCH₃$ and $CH(OCH₃)₃$ were evaluated from gas chromatographic results of the liquid sample containing internal standard and the quantitative analysis of alkali metal chloride and alkali metal fluoride. Yields of CHF_2OCH_3 and $CH(OCH_3)$ ₃ were defined as follows:

Percent yield of CHF₂OCH₃

 $=\frac{100\times[\text{CHF}_2\text{OCH}_3_{\text{produced}},\text{mmol}]}{[\text{base}_{\text{imulated}},\text{mmol}]}$ [base_{introduced}, mmol]

Percent yield of $CH(OCH₃)₃$

$$
= \frac{100 \times [CH(OCH_3)_{3 produced}, mmol]}{[base_{introduced}, mmol]}
$$

3. Results and discussion

3.1. Formation of CHF₂OCH₃ and CH(OCH₃)₃

In order to find out whether the variation of reaction parameters can affect the formation of the side-product, the reaction of CHF_2Cl with CH_3ONa was investigated at various temperatures and $CH₃ONa$ concentrations. As shown in Table 1, the yields of CHF₂OCH₃ and CH(OCH₃)₃ increased along with the temperature, but the product ratio of $CHF₂OCH₃/CH(OCH₃)₃$ remained almost constant in the range 3.6–3.7. On the other hand, the yield of $CHF₂OCH₃$ decreased as the concentration of CH₃ONa increased. Even though the formation of $CH(OCH₃)₃$ was suppressed by lowering the concentration of $CH₃ONa$, the amount of $CH(OCH₃)$ ₃ was still high with respect to the formation of $CHF₂OCH₃$. Furthermore, the net production of the target compound, $CHF₂OCH₃$ also decreased with decrease in the concentration of CH₃ONa. These results clearly indicate that the formation of $CH(OCH_3)$ ₃ cannot be suppressed by changing either the reaction temperature or the concentration of CH₃ONa.

Two reaction mechanisms have been proposed for the formation of $CHF₂OCH₃$ and $CH(OCH₃)₃$. Satoh et al. proposed a reaction mechanism, where $CHF₂OCH₃$ and $CH(OCH₃)₃$ are produced consecutively as in Eqs. (1) and (2) [8].

$$
CHF_2Cl + CH_3ONa \rightarrow CHF_2OCH_3 + NaCl
$$
 (1)

$$
CHF2OCH3 + 2CH3ONa \rightarrow CH(OCH3)3 + 2NaF
$$
 (2)

They reported that the formation of $CH(OCH₃)₃$ is reduced by removing $CHF₂OCH₃$ as soon as it forms.

On the other hand, Hine and Porter proposed a different reaction mechanism in which $CHF₂OCH₃$ and $CH(OCH₃)₃$ were produced from the same difluorocarbene intermediate $F₂$ formed by the elimination of HCl from CHF₂Cl as shown in the following equations [9].

$$
CHF_2Cl + CH_3ONa \rightarrow : CF_2 + CH_3OH + NaCl
$$
\n
$$
: CF_2 \xrightarrow{CH_3OH} CHF_2OCH_3
$$
\n
$$
HF_2OCH_3
$$
\n
$$
CH_3ONa, -2NaF
$$
\n
$$
CH_3OH
$$
\n
$$
: C(OCH_3)_2 \xrightarrow{CH_3OH} CH(OCH_3)_3
$$

In order to have a better insight into the mechanism for the formation of $CH(OCH₃)₃$, we have conducted a reaction of $CHF₂OCH₃$ with CH₃ONa. The reaction of CHF₂OCH₃ and CH₃ONa at 25° C for 2 h produced only a trace amount of $CH(OCH₃)₃$, strongly implying that $CH(OCH₃)₃$ is not produced from CHF₂OCH₃.

Table 1

Effects of temperature and CH₃ONa concentration on the production of CHF₂OCH₃ from CHF₂Cl and CH₃ONa^a

\mathbf{v} . .								
Entry	$CH3ONa$ (mmol)	Temperature $(^{\circ}C)$	Conversion $(\%)^b$	Yield $(\%)$		Product ratio $(A/B)^d$		
				А	B			
	50		74.4	39.0	10.8	3.6		
2	50	25	86.0	47.0	12.7	3.7		
3	50	40	92.6	50.3	13.6	3.7		
4	50	60	98.8	54.0	15.0	3.6		
5	12.5	25	92.5	59.9	10.7	5.6		
6	25	25	93.0	56.7	12.0	4.7		
	100	25	83.7	40.0	14.4	2.8		
8 ^c	40	25	88.2	50.8	12.4	4.1		
q^c	67	25	85.2	44.9	13.2	3.4		

^a Reaction condition: CH₃ONa/CHF₂Cl = 1/4, methanol 25 ml, CH₃OCH₂CH₂OCH₃ (internal standard) 1 g, reaction time 2 h. b Conversion of base.

^c CHF₂Cl = 200 mmol.
^d A: CHF₂OCH₃; B: CH(OCH₃)₃.

Effect of passes on the production of $C_{\text{H}}\Gamma_{2}\text{O}C_{\text{H}}$ from $C_{\text{H}}\Gamma_{2}\text{O}C_{\text{H}}$ and methanor								
Entry	Base ^b	Temperature $(^{\circ}C)$	Conversion $(\%)^c$	Yield $(\%)$		Product ratio $(A/B)^d$		
					B			
	KOH (15.7)	25	82.4	40.4	12.9	3.1		
2	NaOH (15.7)	60	99.5	51.8	15.6	3.3		
3	K_2CO_3 (10.3)	60	70.5	64.0	1.7	37.6		
4	KHCO ₃ (6.35)	100	8.4	8.0				
5	NaHCO ₃ (6.35)	100	3.5	3.2				
6	$CH3CO2Na$ (5)	100	1.6	1.5				

Table 2 Effect of bases on the production of $CHF₂OCH₃$ from $CHF₂Cl$ and methanol^a

^a Reaction condition: base 50 mmol, CHF₂Cl 200 mmol, methanol 25 ml, CH₃OCH₂CH₂OCH₃ (internal standard) 1 g, reaction time 2 h. ^b The values in parenthesis are pK_a's of conjugate acids [12]. ^c Conversion

 d A: CHF₂OCH₃; B: CH(OCH₃)₃.

3.2. Reactions of chlorodifluoromethane with various bases

In an attempt to find a more efficient base system to replace CH₃ONa, several bases having different basicities were tested for the production of $CHF₂OCH₃$. According to the carbene mechanism, the side product, $CH(OCH₃)₃$ can be produced only in the presence of methoxide anion. Therefore, if the base to be used has a basicity that is enough to abstract hydrogen from CHF₂Cl but too weak to form CH_3O^+ from CH₃OH, then a higher yield of $CHF₂OCH₃$ and less formation of $CH(OCH₃)₃$ can be achieved.

Table 2 shows that KOH and NaOH exhibit similar behavior to CH_3ONa for the production of CHF_2OCH_3 and $CH(OCH₃)₃$. The formation of large amounts of $CH(OCH₃)₃$ can be ascribed to the methoxide anion $(CH₃O⁻)$ formed by the equilibrium reaction between OH^- and CH_3OH .

$$
OH^- + CH_3OH \rightleftharpoons H_2O + CH_3O^- \quad \text{Keq} \approx 0.50 \tag{6}
$$

On the contrary, the reaction of less basic K_2CO_3 with $CHF₂Cl$ gave the highest yield of $CHF₂OCH₃$ and the lowest formation of $CH(OCH₃)₃$. In the case of much weaker base, $KHCO₃$ or $CH₃CO₂Na$, only a few percent conversion were obtained at 100° C. These results indicate that basicity is important in enhancing the yield of $CHF₂OCH₃$ and in preventing the formation of $CH(OCH₃)₃$.

Table 3 shows that the reactivity of alkali metal carbonate for the production of $CHF₂OCH₃$ is in the order of $K_2CO_3 > Na_2CO_3 > Li_2CO_3$. The same trend is observed with alkali metal bicarbonates: $KHCO₃ > NaHCO₃$ (Table 2). These indicate that, in addition to the basicity, solubility and ionization tendency of alkali metal carbonate in methanol play important roles in determining the yield of $CHF₂OCH₃$.

The effect of temperature on the reaction of CHF_2Cl with alkali metal carbonate was investigated. Unlike in the case of $CH₃ONa$ (Table 1), the yield of $CH(OCH₃)₃$ decreased with rise in reaction temperature (Table 3). However, the formation of $CHF₂OCH₃$ increased with the temperature rise, giving higher product ratio of $CHF₂OCH₃/CH(OCH₃)₃$.

Effect of alkali metal carbonates on the production of $CHF₂OCH₃³$

^a Reaction condition: alkali metal carbonate 50 mmol, CHF₂Cl 200 mmol, methanol 25 ml, CH₃OCH₂CH₂OCH₃ (internal standard) 1 g, reaction time 2 h. $\frac{b}{c}$ Conversion of base.

Table 3

^c K₂CO₃: 25 mmol.
^d A: CHF₂OCH₃; B: CH(OCH₃)₃.

4. Conclusion

 $CHF₂OCH₃$ (HFE-152a) can be produced by the reaction of CHF₂Cl (HCFC-22) and methanol with base. Experimental studies revealed that the formation of the valueless side-product $CH(OCH₃)₃$ was inevitable in the reaction of $CHF₂Cl$ with $CH₃ONa$. Alkali metal carbonates showed remarkable activities and selectivities for $CHF₂OCH₃$ by suppressing the formation of $CH(OCH₃)₃$. Activities of alkali metal carbonates for producing CHF₂OCH₃ were in the order $K_2CO_3 > Na_2CO_3 > Li_2CO_3$, suggesting that solubility and ionization tendency of alkali metal carbonate in methanol play important roles in determining the yield of $CHF₂OCH₃$.

References

[1] W.L. Kopko, Beyond CFCs: Extending the search for new refrigerants, in: Proceedings of the ASHRAE's 1989 CFC Technology Conference, ASRAE Gaithersbrug, MD, 1989, pp. 39-46.

- [2] D.B. Bivens, H.M. Barbara, Int. J. Refrig. 21 (1998) 567.
- [3] D.L. Cooper, T.P. Dunningham, Atmos. Environ. 27A (1993) 117.
- [4] E.A. Vineyard, J.R. Sand, T.G. Statt, Selection of ozone-safe, nonazeotropic refrigerant mixtures for capacity modulation in residential heat pumps, in: CFCs — Time of Transition, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, 1989, pp. 149-161.
- [5] A. Sekiya, S. Misaki, Chemtech (1996) 44.
- [6] N. D. Smith, New chemical alternatives for CFCs and HCFCs EPA-60/F-92-012, Springfield, 1992.
- [7] G.J. O'Neill, U.S. Patent 5,196,600 (1993) (Chem. Abs. 119:116795).
- [8] K. Satoh, H. Nishiumi, T. Kasatani, Fluid Phase Equilibria 144 (1998) 211.
- [9] J. Hine, J.J. Porter, J. Am. Chem. Soc. 20 (1957) 5493.
- [10] F.B. Popper, European Patent Application 0 603 002A1 (1993) (Chem. Abs. 121:82513).
- [11] Mass fragmentation pattern: 82 (M⁺), 81 (100%), 63, 51, 15. ¹⁹F NMR (ref. CFCl₃): -86.91 ppm (d, $J = 75.5$ Hz).
- [12] A.J. Gordon, R.A. Ford, The Chemist's Companion, Wiley, New York, 1972, pp. 60-61.